SpaceWire IP Cores for High Data Rate and Fault Tolerant Networking

E. Petri1,2, T. Bacchillone1,2, N. E. L’Insalata1,2, T. Cecchini1, I. Del Corona1, S. Saponara1, L. Fanucci1

(1) Dept. of Information Engineering – University of Pisa – Italy
(2) Consorzio Pisa Ricerche – Microelectronic Systems Division – Italy
Outline

- Overview of SpaceWire standard
- SpaceWire Intellectual Property Cores
 - Interface
 - Router
- Prototyping Environment
SpaceWire Overview (1/2)

- SpaceWire basics:
 - European Space Agency
 - Serial, Full-Duplex links
 - Distances: 10-20 meters
 - LVDS data/strobe signals
 - High rate (2-400 Mbps)
 - Point-to-point and routed connections
 - Low-latency
 - High EMC, low power
 - High reliability
 - BER < 10-12

- SpaceWire extensions:
 - Protocol Identifier (PID)
 - Enables different protocols to operate concurrently over a SpW Network
 - Remote Memory Access Protocol (RMAP)
 - Configures SpW Networks and controls SpW nodes (read, write, rmw, acknowledged or not, security identification); RMAP has PID=1
SpaceWire Overview (1/2)

- Simple packet format

- Physical, Logical, Regional addressing

- SpW is event-triggered

- Time-codes allows time-triggered networks distributing system time

- Wormhole Routing

- Flow control avoids buffer overflow

- Group Adaptive Routing
SpaceWire Interface IP core

- Programmable TX speed from 5 to 100 Mb/s (5, 10, 50, 100)
- RX clock recovered from Data/Strobe
- Available with AMBA bus wrapper for stand-alone use
- Easy CAN connection by CAN-AHB bridge
- Easy connection to CAN bus by CAN-AHB IP bridge
- Parametric number of SpW interfaces plus a switching matrix
- Round robin arbitration policy
- Programmable router table
- Time codes for event and time triggered networks
- GALS approach for low power (internal clock generation)
- Status/control interface for error check and configurability
- SpW/AHB wrapper Master/Slave with DMA support and IRQ
- RMAP and PID HW support
- Test of the SpW Router integrated in the IPPM - Integrated Payload Processing and storage Module - board
- IPPM is an ESA space project with Aurelia spa and CAEN spa
- The IPPM board hosts our 8-port 100 Mbps SpW Router plus a 100 MHz ATMEL LEON2 CPU, several interfaces (CAN, MIL-STD 1553, UART, PCI mezzanine) and memories (FLASH, SRAM, PROM)
Code refinement phase:
SRAM-based FPGA (Altera Stratix II); lower development cost due to reprogrammability

Engineering model:
Antifuse FPGA (Actel AX); higher TID-tolerance (up to 300 krad), higher T_j (up to 150°C), lower power consumption

Flight model:
Antifuse radiation-tolerant FPGA (Actel RTAX), with built-in SEU mitigation techniques (EDAC + scrubber, TMR)
- SEL immunity up to $LET_{TH} > 104$ MeV-cm2/mg
- TMRed registers: SEU immunity up to $LET_{TH} > 37$ MeV-cm2/mg
- Embedded SRAM with EDAC & scrubber: SEU rate $< 10^{-10}$ errors/bit-day
Target frequency

- **Problem**: 100 MHz target frequency and no availability of FPGA device with a high speed-grade (AX features speed-grade up to -3, RTAX only up to -1)
- **Solution**: Layout optimization through a manual custom floor-planning

- Region A: interfaces 1 & 2
- Region B: interfaces 3, 4, 5 & 6
- Region C: interfaces 7 & 8

The regions’ definition has been chained by the pin-out due to PCB layout constraints
SpW-Router complexity

- Router with 8 SpW interfaces + AHB and RMAP
 - ASIC complexity of 180 Kgates and 2.8 Kbytes RAM
 - Actel (RT)AX2000 -1
 - Speed: 100 Mbps TX, 200 Mbps RX
 - Area: 80% of available resources
 - Power: < 400 mW static, roughly 1 mW/Mbps dynamic
 - Altera Stratix II EP2S60
 - Speed: 200 Mbps TX and RX
 - Area: 25% of available resources

- Router with 4 SpW interfaces + AHB and RMAP
 - ASIC complexity of 125 Kgates and 2.2 Kbytes RAM
 - Same speed vs. the 8-port, Power consumption reduced by 30%
 - Fitted in smaller AX1000 and EP2S15 FPGAs
Prototyping Board

- Carrier Board: Nallatech BenNUEY-PCI
- On-board high-speed bus 122 bits@200MHz
- 3 SW programmable clock sources: 20 – 120MHz

Xilinx Virtex-II XC2V8000

Nallatech PCI Adapter

PCI: 64 bits @ 66 MHz

I/O Module
- **AHB bridge**: bridge for rapid prototyping of AHB IP cores (in-house development)
- Dedicated module for clock distribution and IP cores synchronization
- In the demo the router acts as a **loopback** on the PCI port
GUI at a glance

- Link control: activation & transmission speed
- Configurable real-time monitors for router links
- Host port (AHB) real-time monitor
- Hardware reset
- Single data transfer
- Multiple data transfer with path selection
- Activity log
Thank you!
Radiation effects in CMOS devices

- Long term cumulative effects: Total Ionizing Dose (TID)
 - Threshold voltage shift
 - Increased leakage current

- Single interaction effects: Single Event Effects (SEEs)

 Non-destructive:

 Single Event Upset (SEU)
 - Single bit errors in latches or memory elements

 Single Event Transient (SET)
 - Temporary change in logic output: system malfunction

 Destructive:

 Single Event Latchup (SEL)
 - Localized latchup due to parasitic thyristors

 Single Event Gate Rupture (SEGR)
 - Gate rupture of power transistors
Radiation mitigation at device level

- FPGA preferred to ASIC approach due to:
 - Lower non-recurring costs & development time
 Suitable for low-volume aerospace market & emerging phase in automotive scenario
 - Higher flexibility
 Suitable for the non-frozen standard

- Current commercial FPGAs show:
 - High TID tolerance
 - High SEL immunity
 - High SEU susceptibility (due to high density and geometry shrinking)
SRAM based FPGAs: Logic and routing configuration is hold in memory cells (reprogrammable FPGAs)

- Registers and memory cells need to be hardened
- Logic and routing sensitive to SEU

SEU mitigation techniques:

- Scrubbing: configuration memory readback and partial reconfiguration
- Error Detection And Correction (EDAC) techniques, usually for user memory: based on additional memory bits used to check for and possibly correct corrupted data
- Triple Module Redundancy (TMR): use of redundant hardware and voting circuitry
Antifuse FPGAs: Physical shorts between metal routing layers to configure logic (One Time Programmable)

- Logic and routing inherently insensitive to SEU
- Only registers and memory cells need to be hardened

SEU mitigation techniques:

- The same as for SRAM FPGAs, but need a reduced amount of additional resources (only for registers and memory cells)
- Radiation tolerant/hardened version of antifuse devices often provides built-in mitigation techniques (EDAC-enhanced memory cells with scrubber, registers with TMR)
Radiation mitigation at architectural level (1/3)

- Clock division
 The SpW Router has several clock domains. The TX clock and the internal routing clock are obtained by division of one input reference clock.
 - **Problem:** AX FPGA features PLL units but they are not available on RTAX-S
 - **Solution:** Implementation of digital clock dividers (prescalers) integrated in the radiation-tolerant logic of the antifuse FPGA

- TX/RX FIFO units
 Each SpW interface has a RX/TX FIFOs pair.
 - **Problem:** FIFOs on RTAX-S device are not SEE-tolerant
 - **Solution:** Custom FIFO made up of RAM EDAC blocks, available on-chip in the RTAX-S device, plus a proper controller, realized using radiation-tolerant logic → area occupation increased by 20%
Router and interfaces programming phase

- **Problem:** Loss of IPs control in case of malfunctioning of the programming mode
- **Solution:** Redundant programming access (via any of the 8 SpW links or via host bus); auto-flush procedure in case of programming errors

Packet exchange phase

- **Problem:** Possible link failure
- **Solution:** By means of Group Adaptive Routing (GAR), links are clustered as groups of at least two links, to implement path redundancy at network level. In case of a link failure, packets are routed through the other links belonging to the same group
Conclusions

- A complete set of IPs for a complex SpW Network set-up has been developed and fully tested in real systems accordingly to stringent ESA requirements.

- Radiation-mitigation issues have been addressed at both device-selection level and architectural level.

- The performances of the SpW IP cores meet the requirements of high-rate and fault-tolerant networks in avionics and space scenarios.