DATA: 10-12-2018

Speaker: Oliviero Cremonesi (INFN Milano-Bicocca) Neutrinoless double beta decay (NDBD) is a direct probe of new physics beyond the Standard Model. Its discovery would demonstrate that the lepton number is not a symmetry of nature and would provide unique information on the nature and mass of the neutrinos. Among the possible experimental techniques, thermal detectors fulfill the requirements for a sensitive search, showing an excellent energy resolution, an almost complete independence from the isotope choice and the possibility of scaling to very large masses. Characterized by an exceptionally high natural abundance in 130-Te and excellent mechanical and thermal properties, TeO2 has long been recognized as an ideal candidate, and a number of increasing mass bolometers have been developed along the past 30 years. The Cryogenic Underground Observatory for Rare Events (CUORE) is just the latest step of this development. With a mass of 741 kg, the detector consists of an array of 988 TeO2 crystals arranged in a cylindrical compact structure of 19 towers. The installation of the 19 towers in the CUORE cryostat was completed in August 2016, followed by the cooldown to base temperature in December 2016. This result marks a fundamental milestone in low temperature detectors techniques, opening the path for future ton-scale bolometric experiments searching for rare events. CUORE has been taking science data since Spring 2017, alternating engineering and physics runs. The performance of the detector and the initial results will be presented.


12-12-2019: The charm and beauty of the Little Bang
12-12-2019: Circuit complexity and 2D bosonisation - Dongsheng Ge
12-12-2019: M. Tobar - Precision low energy experiments to test fundamental physics and search for dark matter
12-12-2019: MisuraCC3M@LNL: materiali superconduttivi
11-12-2019: Multiplicity and energy dependence of light charged particle production in ALICE at the LHC
11-12-2019: Double-Logarithmic contribution to Pomeron and application to the photon-photon scattering - Boris Ermolaev
10-12-2019: Dai spazio al tempo
10-12-2019: Machine Learning in High Energy Physics - Tommaso Boccali
09-12-2019: Visita ai laboratori della Sezione INFN di Trieste da parte di studenti del Liceo Scientifico dell' IIS Cattaneo-Dall'Aglio di Castelnovo ne' Monti (RE)
09-12-2019: Properties of nuclei in the N=Z=50 region investigated via multi-nucleon transfer reactions and lifetime measurements - Marco Siciliano





Istituto Nazionale di Fisica Nucleare - Piazza dei Caprettari, 70 - 00186 Roma
tel. +39 066840031 - fax +39 0668307924 - email: presidenza@presid.infn.it

F.M. F.E.