GENERAL
ABOUT INFN
ORGANISATION CHART
INFN HEADQUARTERS
PRESS OFFICE
ADMINISTRATION
PHONE BOOK
JOB OPPORTUNITIES
 ACTIVITIES
PARTICLE PHYSICS
ASTROPARTICLE PHYSICS
NUCLEAR PHYSICS
THEORETICAL PHYSICS
TECHNOLOGY
EXPERIMENTS
INFN PUBLICATIONS
THESIS
 SERVICES
PORTALE INFN
AGENDA INFN
EDUCATIONAL
WEBCAST
MULTIMEDIA
EU FP7
 

Trasparenza valutazione e merito  

DataWeb Support ticket  -  e-mail  

 

  14-04-2011: NEW DATA FROM XENON100 AT GRAN SASSO NATIONAL LABORATORIES  
 COMPLETE LIST 

Copyright F. Arneodo/INFN The use of photos is free of charge. Please request authorisation from the INFN Communication Office


XENON100 narrows down the search for dark matter

On Thursday, scientists from the XENON collaboration announced the result from their search for the elusive component of our universe known as dark matter. After analyzing one hundred days of data taken with the XENON100 experiment, they see no evidence for the existence of Weakly Interacting Massive Particles (WIMPs), the leading candidates for the mysterious dark matter. The XENON100 experiment is operated deep underground at the Gran Sasso National Laboratory of the INFN (National Institute for Nuclear Physics), in Italy. While the group observed three candidate events, they expected two from background radiation. These new result translates into the highest sensitivity reported by any dark matter experiment to date, and serves to further constrain the new physics models for particle dark matter, which will help target future WIMP searches. A paper about the results was submitted to Physical Review Letters and on the arXiv.

A direct observation of WIMPs would link the largest observed structures with the world of subatomic particle physics. While no detection can be claimed yet, the level of sensitivity achieved by the XENON100 experiment may allow an actual detection in the near future.

XENON100 is an ultra-sensitive device, with specially designed layers of water, lead, copper and other shielding, including liquid xenon scintillator, to filter out radiation and other sources of energy that could cause a false signal. This is also why the experiment is located beneath a mile of rock and Earth—these materials help shield the detector from cosmic radiation that is constantly bombarding Earth.

The XENON100 detector uses 62 kg of liquid xenon as a WIMP target, and measures the tiny charge and light signals that are expected from rare collisions between WIMPs and xenon atoms. Xenon—the same noble gas used to make those ultra-bright car headlights that have a bluish tint—is condensed to liquid form to become three time more dense than water, and is used in this experiment because it has a large nucleus that WIMPS can collide with. When such a collision happens, it creates a bluish light and a charge that scientists can detect with highly sensitive cameras positioned at each end of the detector.

Cosmological observations consistently point to a picture of our universe where ordinary
matter as we know it makes up only about 4%, while new, yet unobserved forms of so-called dark matter and dark energy make up the rest. This is consistent with ideas on small scales too, since attractive extensions of the Standard Model of particle physics suggest that exotic new particles, which are perfect dark matter candidates, exist. This makes Weakly Interacting Massive Particles of interest to both cosmology and particle physics. A search for WIMPs is thus well motivated and a direct detection of such particles is the central missing piece of information to confirm this new picture of our universe. New data from the 2011 run and the collaboration's plan to build a much larger experiment with 2500 kg of xenon in the coming years, promise an exciting decade towards the solution of one of Nature's most fundamental mysteries.

The XENON collaboration consists of 60 scientists from 14 institutions in the USA
(Columbia University New York, University of California Los Angeles, Rice University
Houston), China (Shanghai Jiao Tong University), France (Subatech Nantes), Germany
(Max-Planck-Institut für Kernphysik Heidelberg, Johannes Gutenberg University Mainz, Westfälische Wilhelms-Universität Münster), Israel (Weizmann Institute of Science), Italy (Laboratori Nazionali del Gran Sasso, INFN e Universita' di Bologna), Netherlands (Nikhef Amsterdam), Portugal (Universidade de Coimbra) and Switzerland (Universität Zürich).

XENON100 is supported by the collaborating institutions and by the National Science
Foundation and the Department of Energy in the USA, by the Swiss National Foundation in Switzerland, by l'Institut national de physique des particules et de physique nucléaire and La Région des Pays de la Loire in France, by the Max-Planck-Society and by Deutsche Forschungsgemeinschaft in Germany, by the Weizmann Institute of Science, by the German-Israeli Minerva Gesellschaft and GIF in Israel, by FOM in the Netherlands, by the Fundação para a Ciência e Tecnologia in Portugal, by the Instituto Nazionale di FIsica Nucleare in Italy and by STCSM in China.

Contact:
Professor Elena Aprile (Spokesperson)
Columbia University, Physics Department
Tel.: +1 212-854-3258 ; +1 914-3255839
Email: age@astro.columbia.edu


Dott. Francesco Arneodo, INFN Gran Sasso Italian National Laboratories, francesco.arneodo@lngs.infn.it, + 39 329 8312299

Prof. Gabriella Sartorelli, University of Bologna, gabriella.sartorelli@unibo.it + 39 3470824410

Dott. Walter Fulgione, INFN Torino, walter.fulgione@to.infn.it, tel. + 39 3496722094



INFN Presso office
Romeo Bassoli, Francesca Scianitti
romeo.bassoli@presid.infn.it, francesca.scianitti@presid.infn.it
+ 39 066868162, + 39 3286666766, + 39 3474600445





 RELATED SITES 

 RECENT NEWS  
26-03-2013: OPERA observed a third neutrino tau
08-06-2012: Neutrinos sent from CERN to Gran Sasso respect the cosmic speed limit
06-06-2012: OPERA OBSERVES THE SECOND TAU NEUTRINO
18-05-2012: FEL, A SUPER LASER FOR SUPERB
15-05-2012: Research on neutrinos allows the discovery of vortices in the abysses of the eastern Mediterranean
16-03-2012: The Icarus experiment measures the neutrino speed: even neutrinos are not faster than light
23-02-2012: NEUTRINOS: STATEMENT ISSUED BY THE OPERA COLLABORATION
13-12-2011: ato attuale della ricerca dell’Higgs
18-11-2011: NEW TESTS CONFIRM THE RESULTS OF OPERA ON THE NEUTRINO VELOCITY. BUT IT IS NOT YET THE FINAL CONFIRMATION
26-10-2011: Fernando Ferroni appointed as the president of the Italian National Institute for Nuclear Physics

[Back]

 

Ufficio Comunicazione Infn - Piazza dei Caprettari, 70 - 00186 Roma
Tel: 06 68 68 162 - Fax: 06 68 307 944 - email: comunicazione@presid.infn.it

F.M . F.E.

 

 

 

 

 

 CONFERENCES
11-12-2017
TRANSVERSITY 2017
13-12-2017
SM&FT 2017 : THE XVII WORKSHOP ON STATISTICAL MECHANICS AND NONPERTURBATIVE FIELD THEORY
 REVIEWS AREA
PRESS REVIEWS
VIDEO REVIEWS
 PRESS RELEASE
26-03-2013
OPERA OBSERVED A THIRD NEUTRINO TAU
08-06-2012
NEUTRINOS SENT FROM CERN TO GRAN SASSO RESPECT THE COSMIC SPEED LIMIT
06-06-2012
OPERA OBSERVES THE SECOND TAU NEUTRINO
Ricerca Italiana