GENERAL
ABOUT INFN
ORGANISATION CHART
INFN HEADQUARTERS
PRESS OFFICE
ADMINISTRATION
PHONE BOOK
JOB OPPORTUNITIES
 ACTIVITIES
PARTICLE PHYSICS
ASTROPARTICLE PHYSICS
NUCLEAR PHYSICS
THEORETICAL PHYSICS
TECHNOLOGY
EXPERIMENTS
INFN PUBLICATIONS
THESIS
 SERVICES
PORTALE INFN
AGENDA INFN
EDUCATIONAL
WEBCAST
MULTIMEDIA
EU FP7
 

Trasparenza valutazione e merito  

DataWeb Support ticket  -  e-mail  

 

  23-09-2011: OPERA EXPERIMENT REPORTS ANOMALY IN FLIGHT TIME OF NEUTRINOS FROM CERN TO INFN GRAN SASSO. 
 COMPLETE LIST 

Copyright INFN The use of photos is free of charge. Please request authorisation from the INFN Communication Office




Geneva, 23 September 2011. The OPERA experiment, which observes a neutrino beam from CERN 730 km away at Italy’s INFN Gran Sasso Laboratory, will present new results in a seminar at CERN this afternoon at 16:00 CEST. The seminar will be webcast at http://webcast.cern.ch. Journalists wishing to ask questions may do so via twitter to @CERN, or via the usual CERN press office channels.

The OPERA result is based on the observation of over 15000 neutrino events measured at Gran Sasso, and appears to indicate that the neutrinos travel at a velocity 20 parts per million above the speed of light, nature’s cosmic speed limit. Given the potential far-reaching consequences of such a result, independent measurements are needed before the effect can either be refuted or firmly established. This is why the OPERA collaboration has decided to open the result to broader scrutiny. The collaboration’s result is available on the preprint server arxiv.org (LINK).

“This result comes as a complete surprise,” said OPERA spokesperson, Antonio Ereditato of the University of Bern. “After many months of studies and cross checks we have not found any instrumental effect that could explain the result of the measurement. While OPERA researchers will continue their studies, we are also looking forward to independent measurements to fully assess the nature of this observation.”

“When an experiment finds an apparently unbelievable result and can find no artefact of the measurement to account for it, it’s normal procedure to invite broader scrutiny, and this is exactly what the OPERA collaboration is doing, it’s good scientific practice,” said CERN Research Director Sergio Bertolucci. “If this measurement is confirmed, it might change our view of physics, but we need to be sure that there are no other, more mundane, explanations. That will require independent measurements.”

In order to perform this study, the OPERA Collaboration teamed up with experts in metrology from CERN and other institutions to perform a series of high precision measurements of the distance between the source and the detector, and of the neutrinos’ time of flight. The distance between the origin of the neutrino beam and OPERA was measured with an uncertainty of 20 cm over the 730 km travel path. The neutrinos’ time of flight was determined with an accuracy of less than 10 nanoseconds by using sophisticated instruments including advanced GPS systems and atomic clocks. The time response of all elements of the CNGS beam line and of the OPERA detector has also been measured with great precision.

"We have established synchronization between CERN and Gran Sasso that gives us nanosecond accuracy, and we’ve measured the distance between the two sites to 20 centimetres,” said Dario Autiero, the CNRS researcher who will give this afternoon’s seminar. “Although our measurements have low systematic uncertainty and high statistical accuracy, and we place great confidence in our results, we’re looking forward to comparing them with those from other experiments."

“The potential impact on science is too large to draw immediate conclusions or attempt physics interpretations. My first reaction is that the neutrino is still surprising us with its mysteries.” said Ereditato. “Today’s seminar is intended to invite scrutiny from the broader particle physics community.”

The OPERA experiment was inaugurated in 2006, with the main goal of studying the rare transformation (oscillation) of muon neutrinos into tau neutrinos. One first such event was observed in 2010, proving the unique ability of the experiment in the detection of the elusive signal of tau neutrinos.




 RELATED SITES 

 RECENT NEWS  
26-03-2013: OPERA observed a third neutrino tau
08-06-2012: Neutrinos sent from CERN to Gran Sasso respect the cosmic speed limit
06-06-2012: OPERA OBSERVES THE SECOND TAU NEUTRINO
18-05-2012: FEL, A SUPER LASER FOR SUPERB
15-05-2012: Research on neutrinos allows the discovery of vortices in the abysses of the eastern Mediterranean
16-03-2012: The Icarus experiment measures the neutrino speed: even neutrinos are not faster than light
23-02-2012: NEUTRINOS: STATEMENT ISSUED BY THE OPERA COLLABORATION
13-12-2011: ato attuale della ricerca dell’Higgs
18-11-2011: NEW TESTS CONFIRM THE RESULTS OF OPERA ON THE NEUTRINO VELOCITY. BUT IT IS NOT YET THE FINAL CONFIRMATION
26-10-2011: Fernando Ferroni appointed as the president of the Italian National Institute for Nuclear Physics

[Back]

 

Ufficio Comunicazione Infn - Piazza dei Caprettari, 70 - 00186 Roma
Tel: 06 68 68 162 - Fax: 06 68 307 944 - email: comunicazione@presid.infn.it

F.M . F.E.

 

 

 

 

 

 CONFERENCES
11-12-2017
TRANSVERSITY 2017
13-12-2017
SM&FT 2017 : THE XVII WORKSHOP ON STATISTICAL MECHANICS AND NONPERTURBATIVE FIELD THEORY
 REVIEWS AREA
PRESS REVIEWS
VIDEO REVIEWS
 PRESS RELEASE
26-03-2013
OPERA OBSERVED A THIRD NEUTRINO TAU
08-06-2012
NEUTRINOS SENT FROM CERN TO GRAN SASSO RESPECT THE COSMIC SPEED LIMIT
06-06-2012
OPERA OBSERVES THE SECOND TAU NEUTRINO
Ricerca Italiana