CLAS EXPERIMENT: NEW RESULTS ON THE ROLE OF PROTONS IN THE NEUTRON STARS

Jlab 2018

Protons are responsible for the most energetic component of the heart of neutron stars. The study, published on August 13 in the scientific journal Nature, was obtained in laboratory thanks to the observations of the CLAS experiment at the CEBAF accelerator of the Jefferson Lab, in the United States, with the contribution of the INFN researchers. The CLAS experiment uses high energy electrons (5 GeV, billions of electron volts) to target different nuclei, such as carbon, iron and lead nuclei, with increasing number of nucleons and neutron-proton asymmetry. In the experiment, it has been possible to select for the first time the events in which a neutron and a proton were simultaneously detected both of high impulse, and therefore coming from interacting proton-neutron pairs. These observations showed that the percentage of high-pulse protons increases with the density of neutrons and, consequently, the average kinetic energy of the neutrons decreases in neutron-rich nuclei in favour of the energy brought by the protons. The results are relevant for the understanding of those extreme astrophysical systems, such as neutron stars, in which the number of protons, even if it is a minority, proves to be responsible for the most energetic part of it.

You might also be interested in
Researchers collaborating on the development of quantum technologies at the SQMS Quantum Garage, one of the quantum research facilities developed by the Centre. ©Ryan Postel, Fermilab

Quantum computing: INFN and the US SQMS laboratory renew their collaboration

Chiara Maccani, dottoranda al CERN e all'Università di Padova, al lavoro sul rivelatore TWOCRYST nel tunnel dell'LHC ©Sune Jakobsen

Search for new physics: a possible new approach from bent crystals

Graphic reconstruction of a detail of the future underground infrastructure of the Einstein Telescope

Einstein Telescope: Lusatia officially enters the competition

The engineering model of the electrode housing developed for ESA's LISA space mission with Riccardo Freddi and Andrea Moroni (OHB Italia) and Carlo Zanoni (INFN-TIFPA), from right to left.

Detecting gravitational waves from space: first steps for the LISA mission

XIII edition of the International School of Science Communication and Journalism in Erice

ORIGINS. Exploring Science Communication and Journalism

Nobel Prize in Physics 2025 awarded to John Clarke, Michel H. Devoret and John M. Martinis

Nobel Prize in Physics 2025: congratulations to John Clarke, Michel H. Devoret and John M. Martinis