Field not found.

THE ROLE OF THEORETICAL MODELS IN THE NEW ICECUBE DISCOVERY

29 June 2023

IceCube2 Credit John Hardin IceCubeNSF

The IceCube experiment, the world’s largest neutrino telescope that has been studying the cosmos from the depths of Antarctic ice for over a decade, has made a new and unexpected observation: a diffuse neutrino emission of very high energies, from 500 GeV up to several PeV, concentrated along the Milky Way. These new observations suggest that the cosmic ray population in the innermost regions of the Galactic plane is more energetic than the one observed near Earth by experiments such as AMS on the International Space Station. In addition to having implications for the physics of cosmic ray transport, this result is also important because it may help to understand their origin, in the near future. Further valuable confirmations of this observation and details needed to complete new scenarios will come from future analyses of IceCube data, and from results from next-generation gamma-ray observatories and neutrino telescopes, such as KM3NeT, IceCube Gen 2 and Baikal-GVD. The discovery was also made possible by new theoretical models of neutrino emission to interpret the experimental data: without them, in fact, it would not have been possible to identify the faint neutrino glow in our galaxy. One of the theoretical models used, called KRA_gamma, was developed by a group of Italian researchers from INFN and the Universities of Pisa, Naples Federico II, and Rome Sapienza, in collaboration with colleagues from GSSI Gran Sasso Science Institute and Stockholm University. IceCube results were published on June 29 in Science. The IceCube neutrino telescope was built and is operated by the National Science Foundation (NSF) with the financial support and participation of several member institutions of the IceCube Collaboration from fourteen countries, including the University of Padua, the only Italian group participating in the project.

 

 

You might also be interested in

Immagine: MEG II ©PSI

In search of new physics: MEG II updates its record

PADME experiment_Frascati National Laboratories_INFN

New results from the Padme experiment in the search for the X17 particle

Hot aisle of the machine room at the INFN Turin computing center.

Computing Technologies for the Einstein Telescope: CTLAB4ET Laboratory inaugurated in Turin

ELI Beamlines building in Prague, Czech Republic ©ELI ERIC

EuPRAXIA chooses ELI Beamlines as second site for laser-driven accelerator

LHCb experiment at CERN (©CERN)

Matter in the mirror: difference in behaviour between baryons and anti-baryons observed for the first time

INFN research associates awarded MUR FIS 2 funding

Quantum detectors, physics of rare events and gravitational waves: the Italian Ministry of University and Research funds three innovative INFN physics projects with over 5 million euros