Field not found.

LIGHT INTERACTS WITH ITSELF AT HIGH ENERGY: THE PREDICTION OF QED HAS BEEN CONFIRMED FOR THE FIRST TIME

14 August 2017

ATLAS 2 The ATLAS experiment at the LHC has observed the first direct evidence of high energy photon-on-photon scattering. This is a very rare process in which two photons interact and change impulse, energy and direction. The result, published in August on Nature Physics, confirms one of the oldest predictions of quantum electrodynamics (QED), and is the first direct evidence of light interacting with itself at high energy, a phenomenon that is not possible in classical theories of electromagnetism. Physicists obtained the result using data produced in collisions between lead ions. As bunches of lead ions are accelerated, an enormous flux of surrounding photons is generated, which can interact with one another, giving rise to the phenomenon of photon-on-photon scattering. These interactions are known as “ultra-peripheral collisions”. Finding evidence of this rare phenomenon required the development of a new ‘trigger’ for the ATLAS detector. The new trigger’s success in selecting the events demonstrates the power and flexibility of the system, as well as the skill and expertise of the analysts and groups who designed and developed it.

You might also be interested in

Research infrastructures shaping the future. A moment of the public event "Driving knowledge and innovation for tomorrow's communities" hosted by the Italy Pavilion at Expo2025 Osaka.

Major research infrastructures and Italy-Japan collaboration in fundamental physics at Expo2025 Osaka

Asimmetrie: The new issue is dedicated to the constants of physics

ALICE measures the conversion of lead into gold using Italian calorimeters

Laura Zani, INFN researcher at the Roma 3 Section and winner of the Young Experimental Physicist Prize 2025

Young Experimental Physicist Prize 2025 awarded to INFN researcher Laura Zani

Immagine: MEG II ©PSI

In search of new physics: MEG II updates its record

PADME experiment_Frascati National Laboratories_INFN

New results from the Padme experiment in the search for the X17 particle