UN INTERFEROMETRO ATOMICO DA MAGIA

5 Gennaio 2015

2A cento anni dalla formulazione dell’equazione della teoria della relatività generale, un’equipe di ricerca dell’Istituto Nazionale di Fisica Nucleare e del Laboratorio Europeo di Spettroscopia non Lineare (Lens) dell’Università di Firenze sta effettuando, con una tecnica innovativa basata su un interferometro atomico, esperimenti per verificare la teoria gravitazionale di Einstein. L’ultimo importante risultato, pubblicato dalla rivista Physical Review Letters (Focus: First direct measurement of Gravity’s curvature), è la prima misura diretta della curvatura del campo gravitazionale ed è stato ottenuto grazie a un nuovo sensore quantistico basato sull’uso di tre interferometri atomici posizionati in modo da misurare simultaneamente l’effetto di una massa sulla curvatura del campo gravitazionale. Nel 2014, sempre sfruttando l’interferometro atomico i ricercatori dell’esperimento Magia hanno misurato con inedita precisione la costante gravitazionale, (risultato pubblicato da Nature nel giugno 2014) e hanno testato il principio di equivalenza di Einstein. “Gli interferometri atomici sono legati alla natura duale, corpuscolare e ondulatoria, delle particelle descritte dalla meccanica quantistica – Commenta Guglielmo Tino, ricercatore INFN e ordinario di Fisica della materia presso l’Ateneo fiorentino – Così come in un interferometro ottico un’onda luminosa viene separata e ricombinata, anche gli atomi in certe condizioni possono essere trattati come onde ed essere divisi in più parti che si propagano separatamente e vengono riflesse e ricombinate. Per fare ciò però è necessario, come avviene nell’esperimento MAGIA, rallentare gli atomi da una velocità di alcuni km/s, tipica di un gas a temperatura ambiente, fino a velocità di pochi mm/s, corrispondente a temperature bassissime, di qualche miliardesimo di grado Kelvin. E’ tramite la luce laser che gli atomi possono essere raffreddati e “intrappolati”, mantenendoli a velocità così ridotte.” Conclude Tino.(e.c.)

Potrebbero interessarti anche

La caverna che ospiterà l'esperimento Hyper-Kamiokande nella prefettura di Gifu, in Giappone, e un rendering della futura configurazione dell'esperimento. ©Università di Tokyo e Nikken Sekkei

Giappone: completato lo scavo della gigantesca caverna per l’esperimento Hyper-K

Pier Andrea Mandò, professore all'Università di Firenze e già direttore della Sezione INFN di Firenze dal 2008 al 2015

A Pier Andrea Mandò il premio Enrico Fermi 2025 della Società Italiana di Fisica

Posizionamento di una delle nuove unità di rivelazione di ARCA ©KM3NeT

Operazione ARCA-51: 10.000 nuovi occhi per KM3NeT

Infografica dell'evento GW231123

LIGO-Virgo-KAGRA e la fusione dei buchi neri più massicci mai rivelata con le onde gravitazionali

Piano Triennale INFN 2026-2028, Perugia

OLTRE LE FRONTIERE: A PERUGIA LE GIORNATE DEL PIANO TRIENNALE 2026-2028

Palazzo Lante a Roma, sede della Presidenza dell'INFN

Commento del Presidente dell’INFN Antonio Zoccoli su incremento FOE